Modulation of Western North Pacific Tropical Cyclone Activity by the ISO. Part I: Genesis and Intensity

Author:

Li Richard C. Y.1,Zhou Wen1

Affiliation:

1. Guy Carpenter Asia–Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Abstract

Abstract This study investigates the intraseasonal variability of tropical cyclones (TCs) by systematically examining the two major components of the intraseasonal oscillation (ISO), the 30–60-day Madden–Julian oscillation (MJO) and the 10–20-day quasi-biweekly oscillation (QBWO). Results suggest that these two ISO modes exhibit different origins, spatial scales, and propagation characteristics, which result in distinctive TC modulation in the western North Pacific Ocean (WNP). The northeastward-propagating MJO predominantly controls the basinwide TC frequency. The significant increase (reduction) in cyclogenesis in the convective (nonconvective) phase is found to be associated with the concomitant strengthening (weakening) of the monsoon trough. In addition, the large contrast in TC frequency also results in a significant difference in daily accumulated cyclone energy (ACE) between the convective and nonconvective MJO phases. The northwestward-propagating QBWO, in contrast, is characterized by alternating signals of positive and negative convection. It leads to the opposite TC modulation in the WNP1 (0°–30°N, 120°–150°E) and WNP2 (0°–30°N, 150°E–180°) regions and results in a northwestward shift in TC genesis locations, which in turn causes substantial differences in intensity distribution and daily ACE for different QBWO phases. Finally, a brief examination of the dual mode situation suggests that the QBWO generally exerts modulation upon the background MJO, and the modulation seems to vary under different MJO conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3