Dynamics of the Disrupted 2015/16 Quasi-Biennial Oscillation

Author:

Coy Lawrence1,Newman Paul A.2,Pawson Steven2,Lait Leslie R.3

Affiliation:

1. NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

3. NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland

Abstract

A significant disruption of the quasi-biennial oscillation (QBO) occurred during the Northern Hemisphere (NH) winter of 2015/16. Since the QBO is the major wind variability source in the tropical lower stratosphere and influences the rate of ascent of air entering the stratosphere, understanding the cause of this singular disruption may provide new insights into the variability and sensitivity of the global climate system. Here this disruptive event is examined using global reanalysis winds and temperatures from 1980 to 2016. Results reveal record maxima in tropical horizontal momentum fluxes and wave forcing of the tropical zonal mean zonal wind over the NH 2015/16 winter. The Rossby waves responsible for these record tropical values appear to originate in the NH and were focused strongly into the tropics at the 40-hPa level. Two additional NH winters, 1987/88 and 2010/11, were also found to have large tropical lower-stratospheric momentum flux divergences; however, the QBO westerlies did not change to easterlies in those cases.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3