Tropical Atlantic Biases in CCSM4

Author:

Grodsky Semyon A.1,Carton James A.1,Nigam Sumant1,Okumura Yuko M.2

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

This paper focuses on diagnosing biases in the seasonal climate of the tropical Atlantic in the twentieth-century simulation of the Community Climate System Model, version 4 (CCSM4). The biases appear in both atmospheric and oceanic components. Mean sea level pressure is erroneously high by a few millibars in the subtropical highs and erroneously low in the polar lows (similar to CCSM3). As a result, surface winds in the tropics are ~1 m s−1 too strong. Excess winds cause excess cooling and depressed SSTs north of the equator. However, south of the equator SST is erroneously high due to the presence of additional warming effects. The region of highest SST bias is close to southern Africa near the mean latitude of the Angola–Benguela Front (ABF). Comparison of CCSM4 to ocean simulations of various resolutions suggests that insufficient horizontal resolution leads to the insufficient northward transport of cool water along this coast and an erroneous southward stretching of the ABF. A similar problem arises in the coupled model if the atmospheric component produces alongshore winds that are too weak. Erroneously warm coastal SSTs spread westward through a combination of advection and positive air–sea feedback involving marine stratocumulus clouds. This study thus highlights three aspects to improve to reduce bias in coupled simulations of the tropical Atlantic: 1) large-scale atmospheric pressure fields; 2) the parameterization of stratocumulus clouds; and 3) the processes, including winds and ocean model resolution, that lead to errors in seasonal SST along southwestern Africa. Improvements of the latter require horizontal resolution much finer than the 1° currently used in many climate models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

1. Balaguru, K., P. Chang, and R. Saravanan, cited 2010: Barrier layers in the Atlantic warmpool: Formation and influence on climate. [Available online athttp://www.aoml.noaa.gov/phod/pne/pirata15/karthik.pdf.]

2. Satellite Estimates of Wind Speed and Latent Heat Flux over the Global Oceans

3. THE PIRATA PROGRAM

4. Southwestern Africa: Northern Benguela Current Region

5. Barrier layers and tropical Atlantic SST biases in coupled GCMs

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3