Projected Change in Wintertime Precipitation in California Using Projected Changes in Extratropical Cyclone Activity

Author:

Osburn Luke1,Keay Kevin2,Catto Jennifer L.3

Affiliation:

1. Monash University, Melbourne, Victoria, Australia

2. Bureau of Meteorology, Melbourne, Victoria, Australia

3. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Abstract

Abstract Wintertime extratropical cyclones in the east Pacific region are the source of much of the precipitation over California. There is a lot of uncertainty in future projections of Californian precipitation associated with predicted changes in the jet stream and the midlatitude storm tracks. The question this work seeks to answer is how the changes in the frequency and the intensity of extratropical cyclones in the Pacific storm track influence future changes in Californian precipitation. The authors used an objective cyclone identification method applied to 25 CMIP5 models for the historical and RCP8.5 simulations and investigated the changing relationships between storm frequency, intensity and precipitation. Cyclone data from the historical simulations and differences between the historical and RCP8.5 simulations were used to “predict” the modeled precipitation in the RCP8.5 simulations. In all models, the precipitation predicted using historical relationships gives a lower future precipitation change than the direct model output. In the future, the relationship between track density and precipitation indicates that for the same number of tracks, more precipitation is received. The relationship between track intensity and precipitation (which is quite weak in the historical simulations) does not change in the future. This suggests that other sources, likely enhanced moisture availability, are more important than changes in the intensity of cyclones for the rainfall associated with the storm tracks.

Funder

Australian Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3