The Response of the Ozone Layer to Quadrupled CO2 Concentrations: Implications for Climate

Author:

Chiodo Gabriel1ORCID,Polvani Lorenzo M.2

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, and Lamont-Doherty Observatory, Palisades, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Abstract

Abstract The quantification of the climate impacts exerted by stratospheric ozone changes in abrupt 4 × CO2 forcing experiments is an important step in assessing the role of the ozone layer in the climate system. Here, we build on our previous work on the change of the ozone layer under 4 × CO2 and examine the effects of ozone changes on the climate response to 4 × CO2, using the Whole Atmosphere Community Climate Model. We show that the global-mean radiative perturbation induced by the ozone changes under 4 × CO2 is small, due to nearly total cancellation between high and low latitudes, and between longwave and shortwave fluxes. Consistent with the small global-mean radiative perturbation, the effect of ozone changes on the global-mean surface temperature response to 4 × CO2 is negligible. However, changes in the ozone layer due to 4 × CO2 have a considerable impact on the tropospheric circulation. During boreal winter, we find significant ozone-induced tropospheric circulation responses in both hemispheres. In particular, ozone changes cause an equatorward shift of the North Atlantic jet, cooling over Eurasia, and drying over northern Europe. The ozone signals generally oppose the direct effects of increased CO2 levels and are robust across the range of ozone changes imposed in this study. Our results demonstrate that stratospheric ozone changes play a considerable role in shaping the atmospheric circulation response to CO2 forcing in both hemispheres and should be accounted for in climate sensitivity studies.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3