Barrier Effect of the Indo-Pacific Maritime Continent on MJO Propagation in Observations and CMIP5 Models

Author:

Chen Guiwan1,Ling Jian2,Li Chongyin3,Zhang Yuanwen1,Zhang Chidong4

Affiliation:

1. State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

3. State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

4. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Abstract

AbstractThis study explores possible mechanisms for the barrier effect of the Indo-Pacific Maritime Continent (MC) on MJO propagation. In particular, this study examines whether similar mechanisms can be found in both observations and CMIP5 simulations. All models simulate individual MJO events but underestimate the percentage of MJO events propagating into the MC. The simulations are grouped into the top and bottom 50% based on their capability of reproducing the MJO spectral signal. When compared with the observations, the bottom 50% of the simulations significantly underestimate the MJO strength and exaggerate the barrier effect intensity, whereas these discrepancies are not significant in the top 50% of the simulations. From the top 50% of the simulations, the MJO strength, moisture processes, and surface evaporation in the MC all play important roles in constituting the barrier effect. No such evidence is found in observations. The discrepancies may come from small observed sample size and/or misrepresentations of key physical processes in the models. A consistent result is found in the observations and simulations: Whether MJO events can cross the MC depends on the degree to which dominant precipitation over land shifts to over water in the MC as MJO convection centers approach the MC and cross it. This result emphasizes the critical role of precipitation over water in carrying convective signals of the MJO through the MC. The results suggest that diagnosing the model alone on mechanisms for the barrier effect could be misleading; further investigations using a combination of observations, global gridded data, and high-resolution models are needed.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

China Scholarship Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3