Climatological Comparison of Small- and Large-Current Cloud-to-Ground Lightning Flashes over Southern China

Author:

Zheng Dong1,Zhang Yijun1,Meng Qing1,Chen Luwen2,Dan Jianru3

Affiliation:

1. State Key Laboratory of Severe Weather, and Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China

2. Lightning Protection Center of Guangdong Province, Guangzhou, China

3. Conghua Meteorological Bureau, Guangzhou, China

Abstract

Abstract The first climatological comparison of small-current cloud-to-ground (SCCG; peak current ≤50 kA) and large-current cloud-to-ground (LCCG; peak current >50 kA, >75 kA, and >100 kA) lightning flashes is presented for southern China. The LCCG lightning exhibits an apparent preference to occur over the sea. The percentage of positive LCCG lightning during the nonrainy season was more than twice that during the rainy season, while the percentage of positive SCCG lightning showed small seasonal differences. Positive cloud-to-ground (PCG) lightning was more likely to feature a large peak current than was negative cloud-to-ground (NCG) lightning, especially during the nonrainy season and over land. Distinct geographical differences are found between SCCG and LCCG lightning densities and between their own positive and negative discharges. Furthermore, the percentages of positive lightning from LCCG and SCCG lightning exhibit distinctly different geographical and seasonal (rain and nonrainy season) distributions. The diurnal variations in SCCG and LCCG lightning are clearly different over the sea but similar over land. Diurnal variations in the percentage of positive lightning are functions of the peak current and underlying Earth’s surface. In combination with the University of Utah precipitation feature (PF) dataset, it is revealed that thunderstorms with relatively weak convection and large precipitation areas are more likely to produce the LCCG lightning, and the positive LCCG lightning is well correlated with mesoscale convective systems in the spatial distribution during nonrainy season.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3