Summer Enhancement of Arctic Sea Ice Volume Anomalies in the September-Ice Zone

Author:

Bushuk Mitchell1,Msadek Rym2,Winton Michael3,Vecchi Gabriel A.4,Gudgel Rich3,Rosati Anthony3,Yang Xiaosong3

Affiliation:

1. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

2. CECI UMR 5318, CNRS/CERFACS, Toulouse, France

3. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

4. NOAA/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Abstract

Because of its persistence on seasonal time scales, Arctic sea ice thickness (SIT) is a potential source of predictability for summer sea ice extent (SIE). New satellite observations of SIT represent an opportunity to harness this potential predictability via improved thickness initialization in seasonal forecast systems. In this work, the evolution of Arctic sea ice volume anomalies is studied using a 700-yr control integration and a suite of initialized ensemble forecasts from a fully coupled global climate model. This analysis is focused on the September sea ice zone, as this is the region where thickness anomalies have the potential to impact the SIE minimum. The primary finding of this paper is that, in addition to a general decay with time, sea ice volume anomalies display a summer enhancement, in which anomalies tend to grow between the months of May and July. This summer enhancement is relatively symmetric for positive and negative volume anomalies and peaks in July regardless of the initial month. Analysis of the surface energy budget reveals that the summer volume anomaly enhancement is driven by a positive feedback between the SIT state and the surface albedo. The SIT state affects surface albedo through changes in the sea ice concentration field, melt-onset date, snow coverage, and ice thickness distribution, yielding an anomaly in the total absorbed shortwave radiation between May and August, which enhances the existing SIT anomaly. This phenomenon highlights the crucial importance of accurate SIT initialization and representation of ice–albedo feedback processes in seasonal forecast systems.

Funder

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3