Affiliation:
1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland, and Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia
Abstract
Abstract
It is commonly assumed that a reasonable estimate of the SST-forced component of the observed atmospheric circulation is given by an atmospheric GCM (AGCM) forced with the observed SST. However, there are results that find different SST-forced responses from the observed, for example for the ENSO–monsoon relationship, and suggest that these differences are due to lack of coupling to the ocean rather than atmospheric model bias unrelated to coupling. Here, the coupling issue is isolated and examined through perfect model experiments. A coupled atmosphere–ocean GCM (CGCM) simulation and an AGCM simulation forced by the SST from the CGCM are compared to examine whether the SST-forced responses are the same. This question cannot be addressed directly, since the SST-forced response of the CGCM is a priori unknown. Therefore, two indirect tests are applied, based on the assumption that the noise decorrelation time scale is short compared to a month.
The first test is to compare the time-lagged linear regressions of the atmospheric fields onto several SST indices (defined as the area-averaged SST anomalies in the tropics or extratropics), with SST leading the atmosphere by a month. The second test is to compare the time lagged linear covariances of several atmospheric indices (including two monsoon indices and a North Atlantic Oscillation index) and SST, with the SST leading the atmosphere by a month. Both tests find that the SST-forced responses are the same in the CGCM and SST-forced AGCM. These tests can be extended to compare the SST-forced responses between different AGCMs, CGCMs, and observations.
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献