Comparison of the SST-Forced Responses between Coupled and Uncoupled Climate Simulations

Author:

Chen Hua1,Schneider Edwin K.1

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland, and Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

Abstract

Abstract It is commonly assumed that a reasonable estimate of the SST-forced component of the observed atmospheric circulation is given by an atmospheric GCM (AGCM) forced with the observed SST. However, there are results that find different SST-forced responses from the observed, for example for the ENSO–monsoon relationship, and suggest that these differences are due to lack of coupling to the ocean rather than atmospheric model bias unrelated to coupling. Here, the coupling issue is isolated and examined through perfect model experiments. A coupled atmosphere–ocean GCM (CGCM) simulation and an AGCM simulation forced by the SST from the CGCM are compared to examine whether the SST-forced responses are the same. This question cannot be addressed directly, since the SST-forced response of the CGCM is a priori unknown. Therefore, two indirect tests are applied, based on the assumption that the noise decorrelation time scale is short compared to a month. The first test is to compare the time-lagged linear regressions of the atmospheric fields onto several SST indices (defined as the area-averaged SST anomalies in the tropics or extratropics), with SST leading the atmosphere by a month. The second test is to compare the time lagged linear covariances of several atmospheric indices (including two monsoon indices and a North Atlantic Oscillation index) and SST, with the SST leading the atmosphere by a month. Both tests find that the SST-forced responses are the same in the CGCM and SST-forced AGCM. These tests can be extended to compare the SST-forced responses between different AGCMs, CGCMs, and observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3