Detection of Human Influence on Precipitation Extremes in Asia

Author:

Dong Siyan1,Sun Ying2,Li Chao3

Affiliation:

1. National Climate Center, Laboratory for Climate Studies, China Meteorological Administration, Beijing, China

2. National Climate Center, Laboratory for Climate Studies, China Meteorological Administration, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

3. Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, and State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China

Abstract

AbstractThis paper examines the possible influence of external forcings on observed changes in precipitation extremes in the mid-to-high latitudes of Asia during 1958–2012 and attempts to identify particular extreme precipitation indices on which there are better chances to detect the influence of external forcings. We compare a recently compiled dataset of observed extreme indices with those from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations using an optimal fingerprinting method. We consider six indices that characterize different aspects of extreme precipitation, including annual maximum amount of precipitation falling in 1 day (Rx1day) or 5 days (Rx5day), the total amount of precipitation from the top 5% or top 1% daily amount on wet days, and the fraction of the annual total precipitation from these events. For single-signal analysis, the fingerprints of external forcings including anthropogenic agents are robustly detected in most studied extreme indices over all Asia and for midlatitude Asia but not for high-latitude Asia. For two-signal analysis, anthropogenic influence is detectable in these indices over Asia at 5% or slightly less than 5% significance level, whereas natural influence is not detectable. In high-latitude Asia, anthropogenic influence is detected only in a fractional index, representing a stark contrast to the midlatitude and full Asia results. We find relatively smaller internal variability and thus higher signal-to-noise ratio in the fractional indices when compared with the other ones. Our results point to the need for studying precipitation extreme indices that are less affected by internal variability while still representing the relevant nature of precipitation extremes to improve the possibility of detecting a forced signal if one is present in the data.

Funder

National Key R&D Program of China

Climate Change Project of China

the National Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3