Merits of a 108-Member Ensemble System in ENSO and IOD Predictions

Author:

Doi Takeshi1ORCID,Behera Swadhin K.1,Yamagata Toshio1

Affiliation:

1. Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

This paper explores merits of 100-ensemble simulations from a single dynamical seasonal prediction system by evaluating differences in skill scores between ensembles predictions with few (~10) and many (~100) ensemble members. A 100-ensemble retrospective seasonal forecast experiment for 1983–2015 is beyond current operational capability. Prediction of extremely strong ENSO and the Indian Ocean dipole (IOD) events is significantly improved in the larger ensemble. It indicates that the ensemble size of 10 members, used in some operational systems, is not adequate for the occurrence of 15% tails of extreme climate events, because only about 1 or 2 members (approximately 15% of 12) will agree with the observations. We also showed an ensemble size of about 50 members may be adequate for the extreme El Niño and positive IOD predictions at least in the present prediction system. Even if running a large-ensemble prediction system is quite costly, improved prediction of disastrous extreme events is useful for minimizing risks of possible human and economic losses.

Funder

Ministry of the Environment

Science and Technology Research Partnership for Sustainable Development

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3