A Limited Role for Unforced Internal Variability in Twentieth-Century Warming

Author:

Haustein Karsten1,Otto Friederike E. L.1,Venema Victor2,Jacobs Peter3,Cowtan Kevin4,Hausfather Zeke56,Way Robert G.7,White Bethan8,Subramanian Aneesh9,Schurer Andrew P.10

Affiliation:

1. Environmental Change Institute, University of Oxford, Oxford, United Kingdom

2. Department of Meteorology, University of Bonn, Bonn, Germany

3. George Mason University, Department of Environmental Science and Policy, Fairfax, Virginia

4. Department of Chemistry, University of York, York, United Kingdom

5. Berkeley Earth, Berkeley, California

6. University of California, Berkeley, Berkeley, California

7. Department of Geography and Planning, Queen’s University, Kingston, Ontario, Canada

8. School of Earth and Atmosphere and Environment, Monash University, Melbourne, Australia

9. Scripps Institution of Oceanography, San Diego, California

10. School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

Abstract

AbstractThe early twentieth-century warming (EW; 1910–45) and the mid-twentieth-century cooling (MC; 1950–80) have been linked to both internal variability of the climate system and changes in external radiative forcing. The degree to which either of the two factors contributed to EW and MC, or both, is still debated. Using a two-box impulse response model, we demonstrate that multidecadal ocean variability was unlikely to be the driver of observed changes in global mean surface temperature (GMST) after AD 1850. Instead, virtually all (97%–98%) of the global low-frequency variability (>30 years) can be explained by external forcing. We find similarly high percentages of explained variance for interhemispheric and land–ocean temperature evolution. Three key aspects are identified that underpin the conclusion of this new study: inhomogeneous anthropogenic aerosol forcing (AER), biases in the instrumental sea surface temperature (SST) datasets, and inadequate representation of the response to varying forcing factors. Once the spatially heterogeneous nature of AER is accounted for, the MC period is reconcilable with external drivers. SST biases and imprecise forcing responses explain the putative disagreement between models and observations during the EW period. As a consequence, Atlantic multidecadal variability (AMV) is found to be primarily controlled by external forcing too. Future attribution studies should account for these important factors when discriminating between externally forced and internally generated influences on climate. We argue that AMV must not be used as a regressor and suggest a revised AMV index instead [the North Atlantic Variability Index (NAVI)]. Our associated best estimate for the transient climate response (TCR) is 1.57 K (±0.70 at the 5%–95% confidence level).

Funder

Climate Central

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3