Precipitation, Temperature, and Teleconnection Signals across the Combined North American, Monsoon Asia, and Old World Drought Atlases

Author:

Baek Seung H.12,Smerdon Jason E.1,Coats Sloan34,Williams A. Park1,Cook Benjamin I.15,Cook Edward R.1,Seager Richard1

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. Department of Earth and Environmental Sciences, Columbia University, New York, New York

3. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

4. National Center for Atmospheric Research, Boulder, Colorado

5. NASA Goddard Institute for Space Studies, New York, New York

Abstract

Abstract The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson’s correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the AMO. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, the findings herein confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal time scales over the twentieth century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3