Human Influences on Changes in the Temperature Seasonality in Mid- to High-Latitude Land Areas

Author:

Qian Cheng1,Zhang Xuebin2

Affiliation:

1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Abstract

Abstract The annual cycle is the largest variability for many climate variables outside the tropics. Whether human activities have affected the annual cycle at the regional scale is unclear. In this study, long-term changes in the amplitude of surface air temperature annual cycle in the observations are compared with those simulated by the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Different spatial domains ranging from hemispheric to subcontinental scales in mid- to high-latitude land areas for the period 1950–2005 are considered. Both the optimal fingerprinting and a nonoptimal detection and attribution technique are used. The results show that the space–time pattern of model-simulated responses to the combined effect of anthropogenic and natural forcings is consistent with the observed changes. In particular, models capture not only the decrease in the temperature seasonality in the northern high latitudes and East Asia, but also the increase in the Mediterranean region. A human influence on the weakening in the temperature seasonality in the Northern Hemisphere is detected, particularly in the high latitudes (50°–70°N) where the influence of the anthropogenic forcing can be separated from that of the natural forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3