Distinguishing Characteristics of Spring and Summer Onset El Niño Events

Author:

Xu Hua1,Xu Jianjun2,Liu Chunlei3,Ou Niansen4

Affiliation:

1. College of Ocean and Meteorology, Guangdong Ocean University, and South China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang, China

2. Southern Marine Science and Engineering Guangdong Laboratory, and South China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang, China

3. South China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang, China

4. College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China

Abstract

AbstractEl Niño events can be classified into two categories according to the onset time: the spring (SP) El Niño with onset time from April to June and the summer (SU) El Niño with onset time from July to October. The SP El Niño is a basin-scale phenomenon and is closer to the conventional ENSO. It goes through the earlier and stronger heat build-up process, and the earlier occurrence of westerlies in the equatorial Pacific, which can partly explain its earlier onset time. For SU El Niño, in contrast, the anomalous signals, such as SSTAs, zonal wind anomalies, and subsurface variations, are much weaker, which can be attributed to the weaker accumulation of warm water and shorter duration of positive Bjerknes feedback. During its peak phase, anomalous southeasterlies over the eastern Pacific enhance the wind–evaporation–SST (WES) feedback and impede the development of positive SSTAs there, and then lead to a west shift of SSTA center. Recharge/discharge processes exist in both types of events but are weaker in the SU type, which may be caused by the lack of meridional Sverdrup transports as a result of weak zonal wind anomalies. A heat budget analysis demonstrates that the relative importance of thermocline (TH) and zonal advective (ZA) feedbacks in SP and SU El Niño is different. In SP El Niño, the TH feedback is dominant compared to ZA feedback in both the GODAS and SODA datasets. In SU El Niño, however, these two terms are equally important in GODAS, but not in the SODA dataset.

Funder

Fund of Southern Marine Science and Engineering Guangdong Laboratory

Strategic Priority Research Program of Chinese Academy of Sciences

National Key Technologies R&D Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3