Impacts of Boreal Winter Monsoon Cold Surges and the Interaction with MJO on Southeast Asia Rainfall

Author:

Lim See Yee1,Marzin Charline2,Xavier Prince2,Chang Chih-Pei3,Timbal Bertrand1

Affiliation:

1. Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore

2. Met Office, Exeter, Devon, United Kingdom, and Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore

3. Department of Meteorology, Naval Postgraduate School, Monterey, California, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Abstract

Abstract TRMM rainfall data from 1998–2012 are used to study the impacts and interactions of cold surges (CSs) and the Madden–Julian oscillation (MJO) on rainfall over Southeast Asia during the boreal winter season from November to February. CSs are identified using a new large-scale index. The frequencies of occurrences of these two large-scale events are comparable (about 20% of the days each), but the spatial pattern of impacts show differences resulting from the interactions of the general flow with the complex orography of the region. The largest impact of CSs occurs in and around the southern South China Sea as a result of increased low-level convergence on the windward side of the terrain and increased shear vorticity off Borneo that enhances the Borneo vortex. The largest impact of the MJO is in the eastern equatorial Indian Ocean, sheltered from CSs by Sumatra. In general CSs are significantly more likely to trigger extreme rainfall. When both systems are present, the rainfall pattern is mainly controlled by the CSs. However, the MJO makes the environment more favorable for convection by moistening the atmosphere and facilitating conditional instability, resulting in a significant increased rainfall response compared to CSs alone. In addition to the interactions of the two systems in convection, this study confirms a previously identified mechanism in which the MJO may reduce CS frequency through opposing dynamic structures.

Funder

Meteorological Service Singapore

the Joint DECC/Defra Met Office Hadley Centre Climate Programme

World Meteorological Organization

World Weather Research Programme

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3