A 1D RCE Study of Factors Affecting the Tropical Tropopause Layer and Surface Climate

Author:

Dacie Sally1ORCID,Kluft Lukas1,Schmidt Hauke1,Stevens Bjorn1,Buehler Stefan A.2,Nowack Peer J.3,Dietmüller Simone4,Abraham N. Luke56,Birner Thomas7

Affiliation:

1. Max Planck Institute for Meteorology, Hamburg, Germany

2. Meteorological Institute, Universität Hamburg, Hamburg, Germany

3. Grantham Institute, Department of Physics and the Data Science Institute, Imperial College London, London, United Kingdom

4. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

5. National Centre for Atmospheric Science, Leeds, United Kingdom

6. Department of Chemistry, Centre for Atmospheric Science, University of Cambridge, Cambridge, United Kingdom

7. Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Abstract There are discrepancies between global climate models regarding the evolution of the tropical tropopause layer (TTL) and also whether changes in ozone impact the surface under climate change. We use a 1D clear-sky radiative–convective equilibrium model to determine how a variety of factors can affect the TTL and how they influence surface climate. We develop a new method of convective adjustment, which relaxes the temperature profile toward the moist adiabat and allows for cooling above the level of neutral buoyancy. The TTL temperatures in our model are sensitive to CO2 concentration, ozone profile, the method of convective adjustment, and the upwelling velocity, which is used to calculate a dynamical cooling rate in the stratosphere. Moreover, the temperature response of the TTL to changes in each of the above factors sometimes depends on the others. The surface temperature response to changes in ozone and upwelling at and above the TTL is also strongly amplified by both stratospheric and tropospheric water vapor changes. With all these influencing factors, it is not surprising that global models disagree with regard to TTL structure and evolution and the influence of ozone changes on surface temperatures. On the other hand, the effect of doubling CO2 on the surface, including just radiative, water vapor, and lapse-rate feedbacks, is relatively robust to changes in convection, upwelling, or the applied ozone profile.

Funder

Cluster of Excellence CliSAP

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012;Abalos;J. Geophys. Res. Atmos.,2015

2. A new convective adjustment scheme. Part II: Single column tests using gate wave, BOMEX, ATEX and arctic air-mass data sets;Betts;Quart. J. Roy. Meteor. Soc.,1986

3. On the relative importance of radiative and dynamical heating for tropical tropopause temperatures;Birner;J. Geophys. Res. Atmos.,2017

4. Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation;Butchart;Climate Dyn.,2006

5. Interactive ozone induces a negative feedback in CO2-driven climate change simulations;Dietmüller;J. Geophys. Res. Atmos.,2014

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3