A Hybrid Dynamical–Statistical Downscaling Technique. Part II: End-of-Century Warming Projections Predict a New Climate State in the Los Angeles Region

Author:

Sun Fengpeng1,Walton Daniel B.1,Hall Alex1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Using the hybrid downscaling technique developed in part I of this study, temperature changes relative to a baseline period (1981–2000) in the greater Los Angeles region are downscaled for two future time slices: midcentury (2041–60) and end of century (2081–2100). Two representative concentration pathways (RCPs) are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and uncertainty estimates. By the end of century under RCP8.5, a distinctly new regional climate state emerges: average temperatures will almost certainly be outside the interannual variability range seen in the baseline. Except for the highest elevations and a narrow swath very near the coast, land locations will likely see 60–90 additional extremely hot days per year, effectively adding a new season of extreme heat. In mountainous areas, a majority of the many baseline days with freezing nighttime temperatures will most likely not occur. According to a similarity metric that measures daily temperature variability and the climate change signal, the RCP8.5 end-of-century climate will most likely be only about 50% similar to the baseline. For midcentury under RCP2.6 and RCP8.5 and end of century under RCP2.6, these same measures also indicate a detectable though less significant climatic shift. Therefore, while measures reducing global emissions would not prevent climate change at this regional scale in the coming decades, their impact would be dramatic by the end of the twenty-first century.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3