Response of Tropical Cyclone Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model

Author:

Yamada Yohei1,Satoh Masaki2,Sugi Masato3,Kodama Chihiro1,Noda Akira T.1,Nakano Masuo1,Nasuno Tomoe1

Affiliation:

1. Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

2. Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

3. Meteorological Research Institute, Tsukuba, Japan

Abstract

Future changes in tropical cyclone (TC) activity and structure are investigated using the outputs of a 14-km mesh climate simulation. A set of 30-yr simulations was performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using a hydrostatic global model with cumulus parameterization. The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the elevation of the tropopause caused by global warming. The tropopause rise induces an upward extension of the eyewall, resulting in an increase in latent heating in the upper layers of the inclined eyewall. Thus, SLP is reduced underneath the warmed eyewall regions through hydrostatic adjustment. The altered distribution of SLP enhances tangential winds in the outward region of the eyewall cloud. Hence, this study shows that the horizontal scale of TCs defined by a radius of 12 m s−1 surface wind is projected to increase compared with the same intensity categories for SLP less than 980 hPa.

Funder

FLAGSHIP2020

Program for Generation of Climate Change Risk Information

Strategic Programs for Innovative Research “Field 3”

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3