Affiliation:
1. Met Office Hadley Centre, Exeter, United Kingdom
Abstract
Attribution analyses of extreme events estimate changes in the likelihood of their occurrence due to human climatic influences by comparing simulations with and without anthropogenic forcings. Classes of events are commonly considered that only share one or more key characteristics with the observed event. Here we test the sensitivity of attribution assessments to such event definition differences, using the warm and wet winter of 2015/16 in the United Kingdom as a case study. A large number of simulations from coupled models and an atmospheric model are employed. In the most basic case, warm and wet events are defined relative to climatological temperature and rainfall thresholds. Several other classes of events are investigated that, in addition to threshold exceedance, also account for the effect of observed sea surface temperature (SST) anomalies, the circulation flow, or modes of variability present during the reference event. Human influence is estimated to increase the likelihood of warm winters in the United Kingdom by a factor of 3 or more for events occurring under any atmospheric and oceanic conditions, but also for events with a similar circulation or oceanic state to 2015/16. The likelihood of wet winters is found to increase by at least a factor of 1.5 in the general case, but results from the atmospheric model, conditioned on observed SST anomalies, are more uncertain, indicating that decreases in the likelihood are also possible. The robustness of attribution assessments based on atmospheric models is highly dependent on the representation of SSTs without the effect of human influence.
Funder
Joint BEIS/Defra Met Office Hadley Centre Climate Programme
Publisher
American Meteorological Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献