Affiliation:
1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
2. Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, and Center for Ocean-Land-Atmosphere Studies, Fairfax, Virginia
Abstract
The interaction of ocean coupling and model physics in the simulation of the intraseasonal oscillation (ISO) is explored with three general circulation models: the Community Atmospheric Model, versions 3 and 4 (CAM3 and CAM4), and the superparameterized CAM3 (SPCAM3). Each is integrated coupled to an ocean model, and as an atmosphere-only model using sea surface temperatures (SSTs) from the coupled SPCAM3, which simulates a realistic ISO. For each model, the ISO is best simulated with coupling. For each SST boundary condition, the ISO is best simulated in SPCAM3. Near-surface vertical gradients of specific humidity, [Formula: see text] (temperature, [Formula: see text]), explain ~20% (50%) of tropical Indian Ocean latent (sensible) heat flux variance, and somewhat less of west Pacific variance. In turn, local SST anomalies explain ~5% (25%) of [Formula: see text] [Formula: see text] variance in coupled simulations, and less in uncoupled simulations. Ergo, latent and sensible heat fluxes are strongly controlled by wind speed fluctuations, which are largest in the coupled simulations, and represent a remote response to coupling. The moisture budget reveals that wind variability in coupled simulations increases east-of-convection midtropospheric moistening via horizontal moisture advection, which influences the direction and duration of ISO propagation. These results motivate a new conceptual model for the role of ocean feedbacks on the ISO. Indian Ocean surface fluxes help developing convection attain a magnitude capable of inducing the circulation anomalies necessary for downstream moistening and propagation. The “processing” of surface fluxes by model physics strongly influences the moistening details, leading to model-dependent responses to coupling.
Publisher
American Meteorological Society
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献