Affiliation:
1. Met Office, Exeter, United Kingdom
2. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
3. Met Office Hadley Centre, Exeter, United Kingdom
Abstract
AbstractSkill in seasonal forecasts in the Northern Hemisphere extratropics is mostly limited to winter. Drivers of summer circulation anomalies over the North Atlantic–European (NAE) sector are poorly understood. Here, we investigate the role of North Atlantic sea surface temperatures (SSTs) in driving summer atmospheric circulation changes. The summer North Atlantic Oscillation (SNAO), the leading mode of observed summer atmospheric circulation variability in the NAE sector, is correlated with a distinct SST tripole pattern in the North Atlantic. An atmospheric general circulation model is used to test whether there are robust atmospheric circulation responses over the NAE sector to concurrent SSTs related to the SNAO. The most robust responses project onto the summer east Atlantic (SEA) pattern, the second dominant mode of observed summer atmospheric circulation variability in the NAE sector, and are most evident at the surface in response to tropical SSTs and at altitude in response to extratropical SSTs. The tropical-to-extratropical teleconnection appears to be due to Rossby wave propagation from SST anomalies, and in turn precipitation anomalies, in the Caribbean region. We identify key biases in the model, which may be responsible for the overly dominant SEA pattern variability, compared to the SNAO, and may also explain why the responses resemble the SEA pattern, rather than the SNAO. Efforts to eradicate these biases, perhaps achieved by higher-resolution simulations or with improved model physics, would allow for an improved understanding of the true response to North Atlantic SST patterns.
Funder
Natural Environment Research Council
Publisher
American Meteorological Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献