Global Monsoon Precipitation: Trends, Leading Modes, and Associated Drought and Heat Wave in the Northern Hemisphere

Author:

Deng Kaiqiang1,Yang Song2,Ting Mingfang3,Tan Yaheng1,He Shan1

Affiliation:

1. School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

2. School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

3. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Abstract

Global monsoon precipitation (GMP) brings the majority of water for the local agriculture and ecosystem. The Northern Hemisphere (NH) GMP shows an upward trend over the past decades, while the trend in the Southern Hemisphere (SH) GMP is weak and insignificant. The first three singular value decomposition modes between NH GMP and global SST during boreal summer reflect, in order, the Atlantic multidecadal oscillation (AMO), eastern Pacific (EP) El Niño, and central Pacific (CP) El Niño, when the AMO dominates the NH climate and contributes to the increased trend. However, the first three modes between SH GMP and global SST during boreal winter are revealed as EP El Niño, the AMO, and CP El Niño, when the EP El Niño becomes the most significant driver of the SH GMP, and the AMO-induced rainfall anomalies may cancel out each other within the SH global monsoon domain and thus result in a weak trend. The intensification of NH GMP is proposed to favor the occurrences of droughts and heat waves (HWs) in the midlatitudes through a monsoon–desert-like mechanism. That is, the diabatic heating associated with the monsoonal rainfall may drive large-scale circulation anomalies and trigger intensified subsidence in remote regions. The anomalous descending motions over the midlatitudes are usually accompanied by clear skies, which result in less precipitation and more downward solar radiation, and thus drier and hotter soil conditions that favor the occurrences of droughts and HWs. In comparison, the SH GMP may exert much smaller impacts on the NH extremes in spring and summer, probably because the winter signals associated with SH GMP cannot sufficiently persist into the following seasons.

Funder

National Key Scientific Research Plan of China

National Natural Science Foundation of China

National Key Research and Development Program of China

LASW State Key Laboratory Special Fund

111-Plan Project of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3