Thunderstorm Trends over Africa

Author:

Harel Maayan1,Price Colin1

Affiliation:

1. Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

AbstractThunderstorms inflict death and damage worldwide due to lightning, heavy rains, hail, and strong winds. While the effect of global warming on future thunderstorm activity is still debatable, this work investigates how thunderstorm activity over Africa may have changed over the last 70 years. Thunderstorm data were obtained from the World Wide Lightning Location Network (WWLLN) and processed to produce thunderstorm clusters. The number and area of clusters in one year (2013) were compared with several climate parameters tied to thunderstorm development, taken from the NCEP–NCAR Reanalysis-1 product (NCEP). The two parameters that correlated best with thunderstorm number were lifted index and specific humidity, with correlations of −0.795 and 0.779, respectively. These parameters were used to construct an empirical model that predicts the number and area of thunderstorm clusters over Africa on a particular day, month, or year. The empirical model was run from 1948 to 2016, providing a reconstruction of long-term thunderstorm activity over Africa. The time series was compared to temperature data from NCEP, and showed that the number of clusters increased with rising surface temperature on annual and decadal time scales, particularly since the mid-1990s. On an annual time scale, the number and area of thunderstorm clusters exhibited a highly sensitive relationship with surface temperature, with a ~40% increase in the number of thunderstorm clusters for every 1-K rise in temperature over Africa. The correlation coefficients with surface temperature were 0.745 and 0.743 for cluster number and area, respectively, indicating that surface temperature explains ~55% of the variability in interannual thunderstorm clusters over the past 70 years.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3