Constraining Future Summer Austral Jet Stream Positions in the CMIP5 Ensemble by Process-Oriented Multiple Diagnostic Regression*

Author:

Wenzel Sabrina1,Eyring Veronika1,Gerber Edwin P.2,Karpechko Alexey Yu.3

Affiliation:

1. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

2. Courant Institute of Mathematical Sciences, New York University, New York, New York

3. Arctic Research, Finnish Meteorological Institute, Helsinki, Finland

Abstract

Abstract Stratospheric ozone recovery and increasing greenhouse gases are anticipated to have a large impact on the Southern Hemisphere extratropical circulation, shifting the jet stream and associated storm tracks. Models participating in phase 5 of the Coupled Model Intercomparison Project poorly simulate the austral jet, with a mean equatorward bias and 10° latitude spread in their historical climatologies, and project a wide range of future trends in response to anthropogenic forcing in the representative concentration pathway (RCP) scenarios. Here, the question is addressed whether the unweighted multimodel mean (uMMM) austral jet projection of the RCP4.5 scenario can be improved by applying a process-oriented multiple diagnostic ensemble regression (MDER). MDER links future projections of the jet position to processes relevant to its simulation under present-day conditions. MDER is first targeted to constrain near-term (2015–34) projections of the austral jet position and selects the historical jet position as the most important of 20 diagnostics. The method essentially recognizes the equatorward bias in the past jet position and provides a bias correction of about 1.5° latitude southward to future projections. When the target horizon is extended to midcentury (2040–59), the method also recognizes that lower-stratospheric temperature trends over Antarctica, a proxy for the intensity of ozone depletion, provide additional information that can be used to reduce uncertainty in the ensemble mean projection. MDER does not substantially alter the uMMM long-term position in jet position but reduces the uncertainty in the ensemble mean projection. This result suggests that accurate observational constraints on upper-tropospheric and lower-stratospheric temperature trends are needed to constrain projections of the austral jet position.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3