Variability, Instabilities, and Eddies in a Snowball Ocean

Author:

Ashkenazy Yosef1,Tziperman Eli2

Affiliation:

1. Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel

2. Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract Oceanic variability and eddy dynamics during snowball Earth events, under a kilometer of ice and driven by a very weak geothermal heat flux, are studied using a high-resolution sector model centered at the equator, where previous studies have shown the ocean circulation to be most prominent. The solution is characterized by an energetic eddy field, equatorward-propagating zonal jets, and a strongly variable equatorial meridional overturning circulation (EMOC), on the order of tens of Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1), restricted to be very close to the equator. The ocean is well mixed vertically by convective mixing, and horizontal mixing rates by currents and eddies are similar to present-day values. There are two main opposite-sign zonal jets near the equator that are not eddy driven, together with multiple secondary eddy-driven jets off the equator. Barotropic stability analyses, the Lorenz energy cycle (LEC), and barotropic-to-baroclinic energy conversion rates together indicate that both baroclinic and barotropic instabilities serve as eddy-generating mechanisms. The LEC shows a dominant input into the mean available potential energy (APE) by geothermal heat flux and by surface ice melting and then transformation to eddy APE, to eddy kinetic energy, and finally to mean kinetic energy via eddy–jet interaction, similarly to the present-day atmosphere and unlike the present-day ocean. The EMOC variability is due to the interaction of warm plumes driven by geothermal heating that reach the ocean surface, leading to ice-melt events that change the stratification and, therefore, the EMOC. The results presented here may be relevant to the ocean dynamics of planetary ice-covered moons such as Europa and Enceladus.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3