Edge Detection Reveals Abrupt and Extreme Climate Events

Author:

Bathiany Sebastian1,Hidding Johan2,Scheffer Marten1

Affiliation:

1. Wageningen University and Research, Wageningen, Netherlands

2. Netherlands eScience Center, Amsterdam, Netherlands

Abstract

AbstractThe most discernible and devastating impacts of climate change are caused by events with temporary extreme conditions (“extreme events”) or abrupt shifts to a new persistent climate state (“tipping points”). The rapidly growing amount of data from models and observations poses the challenge to reliably detect where, when, why, and how these events occur. This situation calls for data-mining approaches that can detect and diagnose events in an automatic and reproducible way. Here, we apply a new strategy to this task by generalizing the classical machine-vision problem of detecting edges in 2D images to many dimensions (including time). Our edge detector identifies abrupt or extreme climate events in spatiotemporal data, quantifies their abruptness (or extremeness), and provides diagnostics that help one to understand the causes of these shifts. We also publish a comprehensive toolset of code that is documented and free to use. We document the performance of the new edge detector by analyzing several datasets of observations and models. In particular, we apply it to all monthly 2D variables of the RCP8.5 scenario of the Coupled Model Intercomparison Project (CMIP5). More than half of all simulations show abrupt shifts of more than 4 standard deviations on a time scale of 10 years. These shifts are mostly related to the loss of sea ice and permafrost in the Arctic. Our results demonstrate that the edge detector is particularly useful to scan large datasets in an efficient way, for example multimodel or perturbed-physics ensembles. It can thus help to reveal hidden “climate surprises” and to assess the uncertainties of dangerous climate events.

Funder

Netherlands eScience Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference55 articles.

1. Ecological thresholds and regime shifts: Approaches to identification;Andersen;Trends Ecol. Evol.,2009

2. On the potential for abrupt Arctic winter sea-ice loss;Bathiany;J. Climate,2016

3. Change-point analysis as a tool to detect abrupt climate variations;Beaulieu;Philos. Trans. Roy. Soc.,2012

4. Beaulieu, C., R.Killick, S.Taylor, and H.Hullait, 2016: Package EnvCpt—Detection of structural changes in climate and environment time series. https://cran.r-project.org/web/packages/EnvCpt/EnvCpt.pdf.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3