High-Resolution Monthly Rainfall Database for Ethiopia: Homogenization, Reconstruction, and Gridding

Author:

Tsidu G. Mengistu1

Affiliation:

1. Addis Ababa University, Addis Ababa, Ethiopia

Abstract

Abstract Recent heightened concern regarding possible consequences of anthropogenically induced global warming has spurred analyses of data aimed at detection of climate change and more thorough characterization of the natural climate variability. However, there is greater concern regarding the extent and especially quality of the historical climate data. In this paper, rainfall records of 233 gauge stations over Ethiopia for the 1978–2007 period are employed in an analysis that involves homogenization, reconstruction, and gridding onto a regular 0.5° × 0.5° resolution grid. Inhomogeneity is detected and adjusted based on quantile matching. The regularized expectation-maximization and multichannel singular spectrum analysis algorithms are then utilized for imputation of missing values, and the latter has been determined to have a marginal advantage. Ordinary kriging is used to create a gridded monthly rainfall dataset. The spatial and temporal coherence of this dataset are assessed using harmonic analysis, self-organizing maps, and intercomparison with global datasets. The self-organizing map delineates Ethiopia into nine homogeneous rainfall regimes, which is consistent with seasonal and interannual rainfall variations. The harmonic analysis of the dataset reveals that the annual mode accounts for 55%–85% of the seasonal rainfall variability over western Ethiopia while the semiannual mode accounts for up to 40% over southern Ethiopia. The dataset is also intercompared with Global Precipitation Climatology Project (GPCP), Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP), Climatic Research Unit time series version 3 (CRUTS3.0), Tropical Rainfall Measuring Mission (TRMM), and interim ECMWF Re-Analysis (ERA-Interim) rainfall. The correlation of the dataset with global datasets ranges from 0.52 to 0.95 over sparse to dense rain gauge regions. The GPCP rainfall has a small bias and good correlation with the new dataset whereas TRMM and ERA-Interim have relatively large dry and wet biases, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference69 articles.

1. The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler;J. Hydrometeor.,2003

2. Homogenization of Swedish temperature data. Part I: Homogeneity test for lineal trends;Alexandersson;Int. J. Climatol.,1997

3. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Applications to the Adriatic Sea surface temperature;Alvera-Azcarate;Ocean Modell.,2005

4. Bayable, E. , 2008: Evidences of climate change at local scale in Ethiopia and its implications to the national environment. M.Sc. thesis, Environmental Science Program, Addis Ababa University, 81 pp.

5. A review of homogenization techniques for climate data and their applicability to precipitation series;Beaulieu;Hydrol. Sci. J.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3