The Melting Arctic and Midlatitude Weather Patterns: Are They Connected?*

Author:

Overland James1,Francis Jennifer A.2,Hall Richard3,Hanna Edward3,Kim Seong-Joong4,Vihma Timo5

Affiliation:

1. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

2. Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

3. Department of Geography, University of Sheffield, Sheffield, United Kingdom

4. Korea Polar Research Institute, Incheon, South Korea

5. Finnish Meteorological Institute, Helsinki, Finland

Abstract

Abstract The potential of recent Arctic changes to influence hemispheric weather is a complex and controversial topic with considerable uncertainty, as time series of potential linkages are short (<10 yr) and understanding involves the relative contribution of direct forcing by Arctic changes on a chaotic climatic system. A way forward is through further investigation of atmospheric dynamic mechanisms. During several exceptionally warm Arctic winters since 2007, sea ice loss in the Barents and Kara Seas initiated eastward-propagating wave trains of high and low pressure. Anomalous high pressure east of the Ural Mountains advected Arctic air over central and eastern Asia, resulting in persistent cold spells. Blocking near Greenland related to low-level temperature anomalies led to northerly flow into eastern North America, inducing persistent cold periods. Potential Arctic connections in Europe are less clear. Variability in the North Pacific can reinforce downstream Arctic changes, and Arctic amplification can accentuate the impact of Pacific variability. The authors emphasize multiple linkage mechanisms that are regional, episodic, and based on amplification of existing jet stream wave patterns, which are the result of a combination of internal variability, lower-tropospheric temperature anomalies, and midlatitude teleconnections. The quantitative impact of Arctic change on midlatitude weather may not be resolved within the foreseeable future, yet new studies of the changing Arctic and subarctic low-frequency dynamics, together with additional Arctic observations, can contribute to improved skill in extended-range forecasts, as planned by the WMO Polar Prediction Project (PPP).

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3