Thermodynamic Bias in the Multimodel Mean Boreal Summer Monsoon*

Author:

Boos William R.1,Hurley John V.1

Affiliation:

1. Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Abstract

Abstract Here it is shown that almost all models participating in the Coupled Model Intercomparison Project (CMIP) exhibit a common bias in the thermodynamic structure of boreal summer monsoons. The strongest bias lies over South Asia, where the upper-tropospheric temperature maximum is too weak, is shifted southeast of its observed location, and does not extend as far west over Africa as it does in observations. Simulated Asian maxima of surface air moist static energy are also too weak and are located over coastal oceans rather than in their observed continental position. The spatial structure of this bias suggests that it is caused by an overly smoothed representation of topography west of the Tibetan Plateau, which allows dry air from the deserts of western Asia to penetrate the monsoon thermal maximum, suppressing moist convection and cooling the upper troposphere. In a climate model with a decent representation of the thermodynamic state of the Asian monsoon, the qualitative characteristics of this bias can be recreated by truncating topography just west of the Tibetan Plateau. This relatively minor topographic modification also produces a negative anomaly of Indian precipitation of similar sign and amplitude to the CMIP continental Indian monsoon precipitation bias. Furthermore, in simulations of next-century climate warming, this topographic modification reduces the amplitude of the increase in Indian monsoon precipitation. These results confirm the importance of topography west of the Tibetan Plateau for South Asian climate and illustrate the need for careful assessments of the thermodynamic state of model monsoons.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3