Water Vapor–Forced Greenhouse Warming over the Sahara Desert and the Recent Recovery from the Sahelian Drought

Author:

Evan Amato T.1,Flamant Cyrille2,Lavaysse Christophe3,Kocha Cécile2,Saci Azzedine4

Affiliation:

1. Laboratoire Atmosphère, Milieux, Observations Spatiales, CNRS, and Université Pierre et Marie Curie, Paris, France, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. Laboratoire Atmosphère, Milieux, Observations Spatiales, CNRS, and Université Pierre et Marie Curie, Paris, France

3. National Center for Atmospheric Research, Boulder, Colorado

4. Office National de la Météorologie, Algiers, Dar El Beïda, Algeria

Abstract

Abstract The Sahel region of West Africa experiences decadal swings between periods of drought and abundant rainfall, and a large body of work asserts that these variations in the West African monsoon are a response to changes in the temperatures of the tropical Atlantic and Indian Oceans. However, here it is shown that when forced by SST alone, most state-of-the-art climate models do not reproduce a statistically significant upward trend in Sahelian precipitation over the last 30 years and that those models with a significant upward trend in rainfall seem to achieve this result for disparate reasons. Here the role of the Saharan heat low (SHL) in the recovery from the Sahelian drought of the 1980s is examined. Using observations and reanalyses, it is demonstrated that there has been an upward trend in SHL temperature that is coincident with the drought recovery. A heat and moisture budget analysis of the SHL suggests that the rise in temperature is due to greenhouse warming by water vapor, but that changes in water vapor are strongly dependent upon the temperature of the SHL: a process termed the Saharan water vapor–temperature (SWAT) feedback. It is shown that the structure of the drought recovery is consistent with a warming SHL and is evidence of a fundamental, but not exclusive, role for the SHL in the recent increase in Sahelian monsoon rainfall.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3