Projections of Future Soil Temperature and Water Content for Three Southern Quebec Forested Sites

Author:

Houle Daniel1,Bouffard Ariane2,Duchesne Louis3,Logan Travis2,Harvey Richard4

Affiliation:

1. Direction de la Recherche Forestière du Ministère des Ressources Naturelles et de la Faune du Québec, Quebec City, and Ouranos, Montreal, Quebec, Canada

2. Ouranos, Montreal, Quebec, Canada

3. Direction de la Recherche Forestière du Ministère des Ressources Naturelles et de la Faune du Québec, Quebec City, Quebec, Canada

4. Canadian Centre for Climate Modelling and Analysis, Environment Canada, Ouranos, Montreal, Quebec, Canada

Abstract

The impacts of climate change on future soil temperature Ts and soil moisture Ms of northern forests are uncertain. In this study, the authors first calibrated Ts and Ms models [Forest Soil Temperature Model (ForSTeM) and Forest Hydrology Model (ForHyM), respectively] using long-term observations of Ts and Ms at different depths measured at three forest sites in eastern Canada. The two models were then used to project Ts and Ms for the period 1971–2100 using historical and future climate scenarios generated by one regional and five global climate models. Results indicate good model performance by ForSTeM and ForHyM in predicting observed Ts and Ms values at various depths for the three sites. Projected annual-mean Ts at these sites increased between 1.1° and 1.9°C and between 1.9° and 3.3°C from the present 30-yr averages (1971–2000) to the periods 2040–69 and 2070–99, respectively. Increases as high as 5.0°C were projected at the black spruce site during the growing season (June) for the period 2070–99. Changes in annual-mean Ms were relatively small; however, seasonally Ms is projected to increase in April, because of earlier snowmelt, and to decrease during the growing season, mainly because of higher evapotranspiration rates. Soil moisture in the growing season could be reduced by 20%–40% for the period 2070–99 compared to the reference period. The projected warmer and drier soil conditions in the growing season could have significant impacts on forests growth and biogeochemical cycles.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3