El Niño–Related Summer Precipitation Anomalies in Southeast Asia Modulated by the Atlantic Multidecadal Oscillation

Author:

Fan Yi1,Fan Ke1,Zhu Xiuhua2,Fraedrich Klaus3

Affiliation:

1. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. Max Planck Institute for Meteorology, and Center for Earth System Research and Sustainability, Meteorological Institute, University of Hamburg, Hamburg, Germany

3. Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

AbstractHow the Atlantic multidecadal oscillation (AMO) affects El Niño–related signals in Southeast Asia is investigated in this study on a subseasonal scale. Based on observational and reanalysis data, as well as numerical model simulations, El Niño–related precipitation anomalies are analyzed for AMO positive and negative phases, which reveals a time-dependent modulation of the AMO. 1) In May–June, the AMO influences the precipitation in southern China (SC) and the Indochina peninsula (ICP) by modulating the El Niño–related air–sea interaction over the western North Pacific (WNP). During negative AMO phases, cold sea surface temperature anomalies (SSTAs) over the WNP favor the maintaining of the WNP anomalous anticyclone (WNPAC). The associated southerly (westerly) anomalies on the northwest (southwest) flank of the WNPAC enhance (reduce) the climatological moisture transport to SC (the ICP) and result in wetter (drier) than normal conditions. In contrast, during positive AMO phases, weak SSTAs over the WNP lead to limited influence of El Niño on precipitation in Southeast Asia. 2) In July–August, the teleconnection impact from the North Atlantic is more manifest than that in May–June. During positive AMO phases, the warmer than normal North Atlantic favors anomalous wave trains, which propagate along the “great circle route” and result in positive pressure anomalies over SC, consequently suppressing precipitation in SC and the ICP. During negative AMO phases, the anomalous wave trains tend to propagate eastward from Europe to Northeast Asia along the summer Asian jet, exerting limited influence on Southeast Asia.

Funder

National Natural Science Foundation of China

China Scholarship Council

National Key R&D Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3