Soil Moisture–Evapotranspiration Coupling in CMIP5 Models: Relationship with Simulated Climate and Projections

Author:

Berg Alexis1,Sheffield Justin2

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

2. Department of Geography, University of Southampton, Southampton, United Kingdom

Abstract

Soil moisture–atmosphere coupling is a key process underlying climate variability and change over land. The control of soil moisture (SM) on evapotranspiration (ET) is a necessary condition for soil moisture to feed back onto surface climate. Here we investigate how this control manifests itself across simulations from the CMIP5 ensemble, using correlation analysis focusing on the interannual (summertime) time scale. Analysis of CMIP5 historical simulations indicates significant model diversity in SM–ET coupling in terms of patterns and magnitude. We investigate the relationship of this spread with differences in background simulated climate. Mean precipitation is found to be an important driver of model spread in SM–ET coupling but does not explain all of the differences, presumably because of model differences in the treatment of land hydrology. Compared to observations, some land regions appear consistently biased dry and thus likely overly soil moisture–limited. Because of ET feedbacks on air temperature, differences in SM–ET coupling induce model uncertainties across the CMIP5 ensemble in mean surface temperature and variability. We explore the relationships between model uncertainties in SM–ET coupling and climate projections. In particular over mid-to-high-latitude continental regions of the Northern Hemisphere but also in parts of the tropics, models that are more soil moisture–limited in the present tend to warm more in future projections, because they project less increase in ET and (in midlatitudes) greater increase in incoming solar radiation. Soil moisture–atmosphere processes thus contribute to the relationship observed across models between summertime present-day simulated climate and future warming projections over land.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3