The Effect of Mesoscale Mountain over the East Indochina Peninsula on Downstream Summer Rainfall over East Asia

Author:

Qi Li1,Wang Yuqing2

Affiliation:

1. Key Laboratory of Meteorological Disaster of Ministry of Education, and College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

2. International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii, and Key Laboratory of Meteorological Disaster of Ministry of Education, and College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract The mesoscale mountain over the east Indochina Peninsula, named Annam Cordillera, plays a key role in shaping the South China Sea (SCS) summer climate in both the atmosphere and the ocean. However, its effect is not limited to the SCS. Ensemble simulations using a high-resolution regional atmospheric model with or without the mountain reveals that the Annam Cordillera has a significant impact on regional climate as far as 3000 km over south and east China, and western Northwest Pacific (WNP). By blocking/lifting the warm and moist air from the Bay of Bengal, the Annam Cordillera forces upward motion and precipitation on the windward side and subsidence on the leeward side, and a low-level southwesterly jet to the southeast tip of the Indochina Peninsula over the SCS. The latter gives rise to coastal upwelling and cold sea surface temperature (SST) filaments in the western SCS, reducing surface sensible and latent heat fluxes and thus suppressing convection over the SCS. Heating associated with the orographic rainfall forces a low-level anomalous easterly over the SCS and an anomalous cyclone and anticyclone in the midlower troposphere to the south and north, respectively. The anomalous circulation modifies the low-level moisture transport, reducing rainfall over the SCS and to the east of Taiwan Island over the WNP, while increasing rainfall as much as 15%–30% in a southwest–northeast-oriented belt extending from south China to the East China Sea. The cold SST filaments in the western SCS enhance the orographically induced circulation; however, its effect accounts for less than 50% of the direct effect of the orographic lifting/blocking.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3