Combining Emergent Constraints for Climate Sensitivity

Author:

Bretherton Christopher S.1,Caldwell Peter M.2

Affiliation:

1. University of Washington, Seattle, Washington

2. Lawrence Livermore National Laboratory, Livermore, California

Abstract

AbstractA method is proposed for combining information from several emergent constraints into a probabilistic estimate for a climate sensitivity proxy Y such as equilibrium climate sensitivity (ECS). The method is based on fitting a multivariate Gaussian PDF for Y and the emergent constraints using an ensemble of global climate models (GCMs); it can be viewed as a form of multiple linear regression of Y on the constraints. The method accounts for uncertainties in sampling this multidimensional PDF with a small number of models, for observational uncertainties in the constraints, and for overconfidence about the correlation of the constraints with the climate sensitivity. Its general form (Method C) accounts for correlations between the constraints. Method C becomes less robust when some constraints are too strongly related to each other; this can be mitigated using regularization approaches such as ridge regression. An illuminating special case, Method U, neglects any correlations between constraints except through their mutual relationship to the climate proxy; it is more robust to small GCM sample size and is appealingly interpretable. These methods are applied to ECS and the climate feedback parameter using a previously published set of 11 possible emergent constraints derived from climate models in the Coupled Model Intercomparison Project (CMIP). The ±2σ posterior range of ECS for Method C with no overconfidence adjustment is 4.3 ± 0.7 K. For Method U with a large overconfidence adjustment, it is 4.0 ± 1.3 K. This study adds confidence to past findings that most constraints predict higher climate sensitivity than the CMIP mean.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3