Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010). Part II: Moisture Origin and Relevance for Precipitation

Author:

Pfahl Stephan1,Madonna Erica1,Boettcher Maxi1,Joos Hanna1,Wernli Heini1

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

Abstract The role of moisture for extratropical atmospheric dynamics is particularly pronounced within warm conveyor belts (WCBs), which are characterized by intense latent heat release and precipitation formation. Based on the WCB climatology for the period 1979–2010 presented in Part I, two important aspects of the WCB moisture cycle are investigated: the evaporative moisture sources and the relevance of WCBs for total and extreme precipitation. The most important WCB moisture source regions are the western North Atlantic and North Pacific in boreal winter and the South Pacific and western South Atlantic in boreal summer. The strongest continental moisture source is South America. During winter, source locations are mostly local and over the ocean, and the associated surface evaporation occurs primarily during 5 days prior to the start of the WCB ascent. Long-range transport and continental moisture recycling are much more important in summer, when a substantial fraction of the evaporation occurs more than 10 days before the ascent. In many extratropical regions, WCB moisture supply is related to anomalously strong surface evaporation, enforced by low relative humidity and high winds over the ocean. WCBs are highly relevant for total and extreme precipitation in many parts of the extratropics. For instance, the percentage of precipitation extremes directly associated with a WCB is higher than 70%–80% over southeastern North America, Japan, and large parts of southern South America. A proper representation of WCBs in weather forecast and climate models is thus essential for the correct prediction of extreme precipitation events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3