On the Measurement of Heat Waves

Author:

Perkins S. E.1,Alexander L. V.1

Affiliation:

1. Centre of Excellence for Climate System Science, Climate Change Research Centre, The University of New South Wales, Sydney, Australia

Abstract

Abstract Despite their adverse impacts, definitions and measurements of heat waves are ambiguous and inconsistent, generally being endemic to only the group affected, or the respective study reporting the analysis. The present study addresses this issue by employing a set of three heat wave definitions, derived from surveying heat-related indices in the climate science literature. The definitions include three or more consecutive days above one of the following: the 90th percentile for maximum temperature, the 90th percentile for minimum temperature, and positive extreme heat factor (EHF) conditions. Additionally, each index is studied using a multiaspect framework measuring heat wave number, duration, participating days, and the peak and mean magnitudes. Observed climatologies and trends computed by Sen's Kendall slope estimator are presented for the Australian continent for two time periods (1951–2008 and 1971–2008). Trends in all aspects and definitions are smaller in magnitude but more significant for 1951–2008 than for 1971–2008. Considerable similarities exist in trends of the yearly number of days participating in a heat wave and yearly heat wave frequency, suggesting that the number of available heat wave days drives the number of events. Larger trends in the hottest part of a heat wave suggest that heat wave intensity is increasing faster than the mean magnitude. Although the direct results of this study cannot be inferred for other regions, the methodology has been designed as such that it is widely applicable. Furthermore, it includes a range of definitions that may be useful for a wide range of systems impacted by heat waves.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3