Benefits of CMIP5 Multimodel Ensemble in Reconstructing Historical Ocean Subsurface Temperature Variations

Author:

Cheng Lijing1,Zhu Jiang1

Affiliation:

1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract A complete map of the ocean subsurface temperature is essential for monitoring aspects of climate change such as the ocean heat content (OHC) and sea level changes and for understanding the dynamics of the ocean/climate variation. However, global observations have not been available in the past, so a mapping strategy is required to fill the data gaps. In this study, an advanced mapping method is proposed to reconstruct the historical ocean subsurface (0–700 m) temperature field from 1940 to 2014 by using ensemble optimal interpolation with a dynamic ensemble (EnOI-DE) approach and a multimodel ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical and representative concentration pathway 4.5 simulations. The reconstructed field is a combination of two parts: a first guess provided by the ensemble mean of CMIP5 models and an adjustment by minimizing the analysis error with the assistance of error covariance determined by the CMIP5 models. The uncertainty of the field can also be assessed. This new approach was evaluated using a series of tests, including subsample tests by using data from the Argo period, idealized tests by specifying a truth field from the models, and withdrawn-data tests by removing 20% of the observations for validation. In addition, the authors showed that the ocean mean state, long-term trends, and interannual and decadal variability are all well represented. Furthermore, the most significant benefit of this method is to provide an improved estimate of the long-term historical OHC changes since 1940, which have important implications for Earth’s energy budget.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3