Cloud-State-Dependent Sampling in AIRS Observations Based on CloudSat Cloud Classification

Author:

Yue Qing1,Fetzer Eric J.2,Kahn Brian H.2,Wong Sun2,Manipon Gerald2,Guillaume Alexandre2,Wilson Brian2

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract The precision, accuracy, and potential sampling biases of temperature T and water vapor q vertical profiles obtained by satellite infrared sounding instruments are highly cloud-state dependent and poorly quantified. The authors describe progress toward a comprehensive T and q climatology derived from the Atmospheric Infrared Sounder (AIRS) suite that is a function of cloud state based on collocated CloudSat observations. The AIRS sampling rates, biases, and center root-mean-square differences (CRMSD) are determined through comparisons of pixel-scale collocated ECMWF model analysis data. The results show that AIRS provides a realistic representation of most meteorological regimes in most geographical regions, including those dominated by high thin cirrus and shallow boundary layer clouds. The mean AIRS observational biases relative to the ECMWF analysis between the surface and 200 hPa are within ±1 K in T and from −1 to +0.5 g kg−1 in q. Biases because of cloud-state-dependent sampling dominate the total biases in the AIRS data and are largest in the presence of deep convective (DC) and nimbostratus (Ns) clouds. Systematic cold and dry biases are found throughout the free troposphere for DC and Ns. Somewhat larger biases are found over land and in the midlatitudes than over the oceans and in the tropics, respectively. Tropical and oceanic regions generally have a smaller CRMSD than the midlatitudes and over land, suggesting agreement of T and q variability between AIRS and ECMWF in these regions. The magnitude of CRMSD is also strongly dependent on cloud type.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3