The Large-Scale Climate in Response to the Retreat of the West Antarctic Ice Sheet

Author:

Justino F.1,Silva A. S.1,Pereira M. P.1,Stordal F.2,Lindemann D.1,Kucharski F.3

Affiliation:

1. Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil

2. Centre for Earth Evolution and Dynamics, Department of Geosciences, University of Oslo, Oslo, Norway

3. Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Abstract

Abstract Based upon coupled climate simulations driven by present-day conditions and conditions resembling the Marine Isotope Stage 31 (this simulation is called WICE-EXP), insofar as the West Antarctic Ice Sheet (WAIS) configuration is concerned, it is demonstrated that changes in the WAIS orography lead to noticeable changes in the oceanic and atmospheric circulations. Compared with the present-day climate, WICE-EXP is characterized by warmer conditions in the Southern Hemisphere (SH) by up to 5°C in the polar oceans and up to 2°C in the Northern Hemisphere (NH). These changes feed back on the atmospheric circulation weakening (strengthening) the extratropical westerlies in the SH (northern Atlantic). Calculations of the southern annular mode (SAM) show that modification of the WAIS induces warmer conditions and a northward shift of the westerly flow; in particular, there is a clear weakening of the polar jet. These changes lead to modification of the rate of deep water formation, reducing the magnitude of the North Atlantic Deep Water but enhancing the Antarctic Bottom Water. By evaluating the density flux it is found that the thermal density flux has played a main role in the modification of the meridional overturning circulation. Moreover, the climate anomalies between the WICE-EXP and the present-day simulations resemble a bipolar seesaw pattern. These results are in good agreement with paleorecontructions in the framework of the Ocean Drilling Program and Antarctic Geological Drilling (ANDRILL) project.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3