Evaluation of Six Atmospheric Reanalyses over Arctic Sea Ice from Winter to Early Summer

Author:

Graham Robert M.1ORCID,Cohen Lana1,Ritzhaupt Nicole2,Segger Benjamin3,Graversen Rune G.4,Rinke Annette3,Walden Von P.5,Granskog Mats A.1,Hudson Stephen R.1

Affiliation:

1. a Norwegian Polar Institute, Fram Centre, Tromsø, Norway

2. b Department of Meteorology, University of Bonn, Bonn, Germany

3. c Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

4. d Department of Physics and Technology, University of Tromsø, Tromsø, Norway

5. e Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington

Abstract

AbstractThis study evaluates the performance of six atmospheric reanalyses (ERA-Interim, ERA5, JRA-55, CFSv2, MERRA-2, and ASRv2) over Arctic sea ice from winter to early summer. The reanalyses are evaluated using observations from the Norwegian Young Sea Ice campaign (N-ICE2015), a 5-month ice drift in pack ice north of Svalbard. N-ICE2015 observations include surface meteorology, vertical profiles from radiosondes, as well as radiative and turbulent heat fluxes. The reanalyses simulate surface analysis variables well throughout the campaign, but have difficulties with most forecast variables. Wintertime (January–March) correlation coefficients between the reanalyses and observations are above 0.90 for the surface pressure, 2-m temperature, total column water vapor, and downward longwave flux. However, all reanalyses have a positive wintertime 2-m temperature bias, ranging from 1° to 4°C, and negative (i.e., upward) net longwave bias of 3–19 W m−2. These biases are associated with poorly represented surface inversions and are largest during cold-stable periods. Notably, the recent ERA5 and ASRv2 datasets have some of the largest temperature and net longwave biases, respectively. During spring (April–May), reanalyses fail to simulate observed persistent cloud layers. Therefore they overestimate the net shortwave flux (5–79 W m−2) and underestimate the net longwave flux (8–38 W m−2). Promisingly, ERA5 provides the best estimates of downward radiative fluxes in spring and summer, suggesting improved forecasting of Arctic cloud cover. All reanalyses exhibit large negative (upward) residual heat flux biases during winter, and positive (downward) biases during summer. Turbulent heat fluxes over sea ice are simulated poorly in all seasons.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Utenriksdepartementet

Norwegian Polar Institute

US-Norway Fulbright Commission

Erasmus+

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3