Diverse Characteristics of U.S. Summer Heat Waves

Author:

Lyon Bradfield1,Barnston Anthony G.2

Affiliation:

1. Climate Change Institute and School of Earth and Climate Sciences, University of Maine, Orono, Maine

2. International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades, New York

Abstract

Abstract Heat waves are climate extremes having significant environmental and social impacts. However, there is no universally accepted definition of a heat wave. The major goal of this study is to compare characteristics of continental U.S. warm season (May–September) heat waves defined using four different variables—temperature itself and three variables incorporating atmospheric moisture—all for differing intensity and duration requirements. To normalize across different locations and climates, daily intensity is defined using percentiles computed over the 1979–2013 period. The primary data source is the U.S. Historical Climatological Network (USHCN), with humidity data from the North American Regional Reanalysis (NARR) also tested and utilized. The results indicate that heat waves defined using daily maximum temperatures are more frequent and persistent than when based on minimum temperatures, with substantial regional variations in behavior. For all four temperature variables, heat waves based on daily minimum values have greater spatial coherency than for daily maximum values. Regionally, statistically significant upward trends (1979–2013) in heat wave frequency are identified, largest when based on daily minimum values, across variables. Other notable differences in behavior include a higher frequency of heat waves based on maximum temperature itself than for variables that include humidity, while daily minimum temperatures show greater similarity across all variables in this regard. Overall, the study provides a baseline to compare with results from climate model simulations and projections, for examining differing regional and large-scale circulation patterns associated with U.S. summer heat waves and for examining the role of land surface conditions in modulating regional variations in heat wave behavior.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3