Short-Range Numerical Weather Prediction Using Time-Lagged Ensembles

Author:

Lu Chungu1,Yuan Huiling1,Schwartz Barry E.1,Benjamin Stanley G.1

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract A time-lagged ensemble forecast system is developed using a set of hourly initialized Rapid Update Cycle model deterministic forecasts. Both the ensemble-mean and probabilistic forecasts from this time-lagged ensemble system present a promising improvement in the very short-range weather forecasting of 1–3 h, which may be useful for aviation weather prediction and nowcasting applications. Two approaches have been studied to combine deterministic forecasts with different initialization cycles as the ensemble members. The first method uses a set of equally weighted time-lagged forecasts and produces a forecast by taking the ensemble mean. The second method adopts a multilinear regression approach to select a set of weights for different time-lagged forecasts. It is shown that although both methods improve short-range forecasts, the unequally weighted method provides the best results for all forecast variables at all levels. The time-lagged ensembles also provide a sample of statistics, which can be used to construct probabilistic forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference22 articles.

1. Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model.;Benjamin;Mon. Wea. Rev.,2004

2. An hourly assimilation–forecast cycle: The RUC.;Benjamin;Mon. Wea. Rev.,2004

3. Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description.;Bleck;Mon. Wea. Rev.,1993

4. Short-range ensemble forecasting: Report from a workshop, 25–27 July 1994.;Brooks;Bull. Amer. Meteor. Soc.,1995

5. Medium range lagged forecasts.;Dalcher;Mon. Wea. Rev.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3