An Examination of Background Error Correlations between Mass and Rotational Wind over Precipitation Regions

Author:

Caron Jean-François1,Fillion Luc1

Affiliation:

1. Meteorological Research Division, Environment Canada, Dorval, Québec, Canada

Abstract

Abstract The differences in the balance characteristics between dry and precipitation areas in estimated short-term forecast error fields are investigated. The motivation is to see if dry and precipitation areas need to be treated differently in atmospheric data assimilation systems. Using an ensemble of lagged forecast differences, it is shown that perturbations are, on average, farther away from geostrophic balance over precipitation areas than over dry areas and that the deviation from geostrophic balance is proportional to the intensity of precipitation. Following these results, the authors investigate whether some improvements in the coupling between mass and rotational wind increments over precipitation areas can be achieved by using only the precipitation points within an ensemble of estimated forecast errors to construct a so-called diabatic balance operator by linear regression. Comparisons with a traditional approach to construct balance operators by linear regression show that the new approach leads to a gradually significant improvement (related to the intensity of the diabatic processes) of the accuracy of the coupling over precipitation areas as judged from an ensemble of lagged forecast differences. Results from a series of simplified data assimilation experiments show that the new balance operators can produce analysis increments that are substantially different from those associated with the traditional balance operator, particularly for observations located in the lower atmosphere. Issues concerning the implementation of this new approach in a full-fledged analysis system are briefly discussed but their investigations are left for a following study.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference17 articles.

1. Medium-range quantitative precipitation forecasts from Canada’s new 33-km deterministic global operation system.;Bélair;Wea. Forecasting,2009

2. A variational assimilation ensemble and the spatial filtering of its error covariances: Increase of sample size by local spatial averaging.;Berre,2007

3. Ensemble-based background-error covariances in variational data assimilation.;Buehner,2007

4. Atmospheric Data Analysis.;Daley,1991

5. A reformulation of the background error covariance in the ECMWF global data assimilation system.;Derber;Tellus,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3