An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation through Observing System Simulation Experiments

Author:

Sugimoto Soichiro1,Crook N. Andrew2,Sun Juanzhen2,Xiao Qingnong2,Barker Dale M.3

Affiliation:

1. Central Research Institute of Electric Power Industry, Chiba, Japan

2. National Center for Atmospheric Research,+ Boulder, Colorado

3. Met Office, Exeter, Devon, United Kingdom, and National Center for Atmospheric Research,+ Boulder, Colorado

Abstract

Abstract The purpose of this study is to investigate the performance of 3DVAR radar data assimilation in terms of the retrievals of convective fields and their impact on subsequent quantitative precipitation forecasts (QPFs). An assimilation methodology based on the Weather Research and Forecasting (WRF) model three-dimensional variational data assimilation (3DVAR) and a cloud analysis scheme is described. Simulated data from 25 Weather Surveillance Radar-1988 Doppler (WSR-88D) radars are assimilated, and the potential benefits and limitations of the assimilation are quantitatively evaluated through observing system simulation experiments of a dryline that occurred over the southern Great Plains. Results indicate that the 3DVAR system is able to analyze certain mesoscale and convective-scale features through the incorporation of radar observations. The assimilation of all possible data (radial velocity and reflectivity factor data) results in the best performance on short-range precipitation forecasting. The wind retrieval by assimilating radial velocities is of primary importance in the 3DVAR framework and the storm case applied, and the use of multiple-Doppler observations improves the retrieval of the tangential wind component. The reflectivity factor assimilation is also beneficial especially for strong precipitation. It is demonstrated that the improved initial conditions through the 3DVAR analysis lead to improved skills on QPF.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3