A Zonal Momentum Balance on Density Layers for the Central and Eastern Equatorial Pacific

Author:

Brown Jaclyn N.1,Godfrey J. Stuart1,Fiedler Russell2

Affiliation:

1. CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

2. CSIRO Marine and Atmospheric Research, and Wealth from Oceans Flagship Program, Hobart, Tasmania, Australia

Abstract

Abstract Brown et al. analyzed the kinematics of flow in the equatorial Pacific Ocean, along time-varying isopycnals in a three-dimensional eddy-permitting model. Here the dynamics of these flows is explored in the same model via the zonal momentum equation (ZME). Previous work has shown that the dominant terms of the ZME, on and near the equator, are the pressure gradient, wind stress, and Coriolis term. In one model study, the nonlinear and friction terms were significant but negated each other. In this study, with a higher-resolution model and more realistic friction scheme it is shown that the nonlinear term is important along and north of the equator, while the explicit friction term is negligible. The part of the nonlinear term derived from high-frequency eddy flows acts like a friction on the Equatorial Undercurrent, while the remaining part of the nonlinear term from smooth flows enhances it. In density coordinates, meridional tropical cells lie on either side of the equator in the first half of the year (January–June) as expected. In July–December, a continuous southward surface flow appears from 4°N into the Southern Hemisphere and arises from variations in the geostrophic flow and the nonlinear term. Variations in the geostrophic flow are due to both seasonal variability in the thermocline and a surface bolus effect arising from baroclinic instability. The nonlinear term increases in the surface layers at the same time assisting the southward flow, most likely because of tropical instability waves.

Publisher

American Meteorological Society

Subject

Oceanography

Reference27 articles.

1. Effects of instability waves in the mixed layer of the equatorial Pacific.;Baturin;J. Geophys. Res.,1997

2. Brown, J. , 2005: The kinematics and dynamics of cross-hemispheric flow in the central and eastern equatorial Pacific. Ph.D. thesis, University of New South Wales, 216 pp.

3. A discussion of flow pathways in the central and eastern equatorial Pacific.;Brown;J. Phys. Oceanogr.,2007

4. Diagnostic model of the three-dimensional circulation in the upper equatorial Pacific Ocean.;Bryden;J. Phys. Oceanogr.,1985

5. Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean.;Bryden;J. Mar. Res.,1989

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3