Evaluation of Simulated Winter Precipitation Using WRF-ARW during the ICE-POP 2018 Field Campaign

Author:

Sunny Lim Kyo-Sun1,Chang Eun-Chul2,Sun Ruiyu3,Kim Kwonil1,Tapiador Francisco J.4,Lee GyuWon1

Affiliation:

1. a School of Earth System Sciences, Kyungpook National University, Daegu, South Korea

2. b Department of Atmospheric Science, Kongju National University, Gongju, South Korea

3. c I.M. Systems Group, Inc., Rockville, and Environmental Modeling Center, National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction, College Park, Maryland

4. d Earth and Space Sciences Research Group, Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain

Abstract

AbstractThis study evaluates the performance of several cloud microphysics parameterizations in simulating surface precipitation for two snowstorm cases during the International Collaborative Experiment held at the PyeongChang 2018 Olympics and Winter Paralympic Games (ICE-POP 2018) field campaign. We compared four different schemes in the Weather Research and Forecasting (WRF) Model, namely the double-moment 6-class (WDM6), the WRF single-moment 6-class (WSM6), and Thompson and Morrison parameterizations. Both WSM6 and WDM6 overestimated the precipitation amount for the shallow precipitation system because of the substantial amount of cloud ice, mostly generated by the deposition process. The simulated precipitation amount and distribution for the deep precipitation system showed no noticeable differences in the different cloud microphysics parameterizations. However, the simulated hydrometeor type at the surface using WSM6 and WDM6 showed good agreement with observations for all cases. The accuracy of the mean mass-weighted terminal velocity of cloud ice applied in WSM6 and WDM6 is ±20%. The number concentration of cloud ice and the ice microphysics processes are newly retrieved with 1.2 times increased . For the shallow snowstorm, the precipitation amount was reduced by approximately 8% because of the inefficient deposition and its effects on the subsequent ice microphysical processes, such as the accretion of cloud ice by snow and the conversion from cloud ice to snow.

Funder

National Research Foundation of Korea

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3