Subseasonal Forecast Skill of Snow Water Equivalent and Its Link with Temperature in Selected SubX Models

Author:

Diro G. T.1,Lin H.1

Affiliation:

1. Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada

Abstract

AbstractAccurate and skillful subseasonal forecasts have tremendous potential for sectors that are sensitive to hazardous weather and climate events. Analysis of prediction skill for snow water equivalent (SWE) and near-surface air temperature (T2m) is carried out for three (GEPS, GEFS, and FIM) global models from the subseasonal experiment (SubX) project for the 2000–14 period. The prediction skill of SWE is higher than the skill of T2m at week-3 and week-4 lead times in all models. The GEPS forecast tends to yield higher (lower) prediction skill of SWE (T2m) compared to the other two systems in terms of correlation skill score. The snow–temperature relationship in reanalysis is characterized by a strong negative correlation over most of the midlatitude regions and a weak positive correlation over high-latitude Arctic regions. All forecast systems reproduced well these observed features; however, the snow–temperature relationship is slightly weaker in the GEPS model. Despite the apparent lack of skill in temperature forecasts at week 4, all three models are able to predict the sign of temperature anomalies associated with extreme SWE conditions albeit with reduced intensity. The strength of the predicted temperature anomaly associated with extreme snow conditions is slightly weaker in the GEPS forecast compared to reanalysis and the other two models, despite having better skill in predicting SWE. These apparent disparities suggest that weak snow–temperature coupling strength in the model is one of the contributing factors for the lower temperature skill.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3