Moisture Attribution and Sensitivity Analysis of a Winter Tornado Outbreak

Author:

Molina Maria J.1,Allen John T.2,Prein Andreas F.3

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado, and Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

2. Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

3. National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractThe tornado outbreak of 21–23 January 2017 caused 20 fatalities, more than 200 injuries, and over a billion dollars in damage in the Southeast United States. The event occurred concurrently with a record-breaking warm Gulf of Mexico (GoM) basin. This article explores the influence that warm GoM sea surface temperatures (SSTs) had on the tornado outbreak. Backward trajectory analysis, combined with a Lagrangian-based moisture-attribution algorithm, reveals that the tornado outbreak’s moisture predominantly originated from the southeast GoM and the northwest Caribbean Sea. We used the WRF Model to generate a control simulation of the event and explore the response to perturbed SSTs. With the aid of a tornadic storm proxy derived from updraft helicity, we show that the 21–23 January 2017 tornado outbreak exhibits sensitivity to upstream SSTs during the first day of the event. Warmer SSTs across remote moisture sources and adjacent waters increase tornado frequency, in contrast to cooler SSTs, which reduce tornado activity. Upstream SST sensitivity is reduced once convection is ongoing and modifying local moisture and instability availability. Our results highlight the importance of air–sea interactions before airmass advection toward the continental United States. The complex and nonlinear nature of the relationship between upstream SSTs and local precursor environments is also discussed.

Funder

Advanced Study Program (ASP), National Center for Atmospheric Research

Earth and Ecosystem Science Doctoral Program, Central Michigan University

Computational and Information Systems Lab, National Center for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3